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q-Trinomial coefficients and the dilute A model
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Abstract. We express the configuration sums of the dilute AL model in regimes 1+ and 2+
in terms ofq-trinomial coefficients. We then extend previous results to give expressions for all
phases and regimes, for oddL, for finite system size.

1. Introduction

In recent years, solvable lattice models have proved to be the source of newq-
series identities of Rogers–Ramanujan type [1, 2]. Polynomial expressions arising in the
configuration sums of models, before the infinite lattice limit is taken, provide a natural
‘finitization’ of the bosonic side of the identities [3, 4]. Finitization is the basis for one
method of their proof [5]. In what follows we show howq-trinomial coefficients provide a
natural and elegant way to write the configuration sums of the dilute A models [6], originally
stated in workable, but cumbersome, form in [7].

The q-trinomial coefficients were introduced by Andrews and Baxter [8] to express
the solutions of corner transfer matrix calculations for lattice-gas generalizations of the
hard hexagon model. It was pointed out in [9] thatq-trinomial coefficients are implicit
in work on the dilute AL models by Warnaar and Pearce [2, 10], who obtained Rogers–
Ramanujan-type identities, the bosonic side of which came from particular configuration
sums forL = 3, 4, 6. Indeed, the ‘railroad’ polynomials at the end of [11], which feature
theq-trinomial coefficients, correspond to those for one regime of the dilute A model [12].

Here we make explicit the way in which theq-trinomial coefficients appear in the
dilute A model configuration sums forL odd. We next present for the first time complete
expressions for regimes 3+ and 4+, which previously were treated only for the subset of
configurations corresponding to the ground states, and then only in the thermodynamic limit.
Finally, we consider the process of taking this limit for all of our expressions.

2. The Trinomials

The trinomial coefficient
(
n

j

)
2

is the coefficient ofxj+n in the expansion

(1+ x + x2)n =
n∑

j=−n

(
n

j

)
2

xj+n (2.1)
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so that (
n

j

)
2

=
∑
k>0

n!

k!(k + j)!(n− j − 2k)!
(2.2)

satisfying the recurrence(
n

j

)
2

=
1∑

k=−1

(
n− 1

j + k
)

2

. (2.3)

TheGaussian polynomials
[
m

k

]
, also called theq-binomial coefficients, and theGaussian

multinomials
[
m

k,l

]
are defined by [13][m

k

]
= (q)m

(q)k(q)m−k

[
m

k, l

]
= (q)m

(q)k(q)l(q)m−k−l
(2.4)

where(a; q)n = (a)n =
∏n−1
j=0(1− aqj ).

Among a number ofq-analogues of the trinomial coefficients given in [8] is(
m;B; q
A

)
2

=
∑
k>0

qk(k+B)
(q)m

(q)k(q)k+A(q)m−2k−A

=
∑
k>0

qk(k+B)
[

m

k, k + A
]
. (2.5)

Hereafter, we will refer to theq-trinomial coefficients simply as ‘trinomials’.
Various identities and recurrences for the trinomials are to be found in [8] (and further

in [14, 15]); we give here those needed for our discussion of the dilute A models. We
require onlyB = A,A− 1, so that we can use the notation [9](

m;A− p; q
A

)
2

=
[m
A

](p)
2

p = 0, 1. (2.6)

The following symmetries hold forp = 0, 1:[m
A

](0)
2
=
[
m

−A
](0)

2

[m
A

](1)
2
= qA

[
m

−A
](1)

2

. (2.7)

The trinomials satisfy[m
A

](0)
2
=
[
m− 1

A− 1

](0)
2

+ qm−1

[
m− 1

A

](1)
2

+ qm+A
[
m− 1

A+ 1

](0)
2

(2.8)

[m
A

](1)
2
=
[
m− 1

A− 1

](0)
2

+ qm−1

[
m− 1

A

](1)
2

+ qA
[
m− 1

A− 1

](0)
2

(2.9)[
m

A− 1

](0)
2

=
[
m− 1

A− 1

](0)
2

+ qm−1

[
m− 1

A

](1)
2

+ qm−A+1

[
m− 1

A− 2

](0)
2

. (2.10)

We point out that these, like (2.3), are depth one recurrences, with three terms on the
right-hand side. They can be rewritten in several guises using the identity[

m

A− 1

](0)
2

+ qm
[m
A

](1)
2
=
[m
A

](0)
2
+ qm+1−A

[
m

A− 1

](1)
2

. (2.11)

However, it was the following identity [8] which was the key to the simplification of
the configuration sums appearing in [7]:[m

A

](1)
2
=
[m
A

](0)
2
+ qA(1− qm)

[
m− 1

A+ 1

](0)
2

. (2.12)
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The q-trinomial coefficients have been generalized in the work of Warnaar [16] and
Schilling [9] to q-multinomial coefficients

[
m

a

](p)
n

. They provide then = 2 case, and the
n = 1 case gives the Gaussian polynomials.

3. The dilute A model

The dilute A model was defined in [6] and comprehensive discussion and results are to be
found in [7]; here we summarize the features of interest for this work, referring readers to
[7] for more details.

The diluteAL model is anL state or ‘height’ model. There are eight regimes in the
model parametersλ, u, p for which it can be solved; however, forL odd, negatingp
corresponds only to a relabelling of the heights, so it suffices to consider only four:

regime 1+ 0< p < 1 0< u < 3λ λ = π

4

(
1− 1

L+ 1

)
regime 2+ 0< p < 1 0< u < 3λ λ = π

4

(
1+ 1

L+ 1

)
regime 3+ 0< p < 1 3λ− π < u < 0 λ = π

4

(
1+ 1

L+ 1

)
regime 4+ 0< p < 1 3λ− π < u < 0 λ = π

4

(
1− 1

L+ 1

)
.

(3.1)

Using corner transfer matrix techniques [17], the order parameters of the model forL

odd were found in [7]. The local height probabilityP bc(a) is the probability of heighta
occurring at a site, given that the model is in the phase indexed byb andc. In all regimes
there are ferromagnetic phasesc = b, and in regimes 3+ and 4+ there are antiferromagnetic
phasesc = b ± 1 as well.

If we define the (one-dimensional) configuration sums

Xσ1σm+1σm+2
m (q) =

∑
σ2...σm

q
∑m
j=1 jH(σj ,σj+1,σj+2) (3.2)

the local height probabilities take the form

P bc(a) = lim
m→∞

q−a
2λ/πS(a)Xabcm (q)∑L

a=1 q
−a2λ/πS(a)Xabcm (q)

(3.3)

in regimes 1+ and 2+, and in regimes 3+ and 4+

P bc(a) = lim
m→∞

qa
2λ/πS(a)Xabcm (q)∑L

a=1 q
a2λ/πS(a)Xabcm (q)

. (3.4)

The variableq is related top = exp(−ε), the elliptic nome in the definition of the model
weights, by

q = e−12πλ/ε for regimes 1+ and 2+, and

q = e−4π(π−3λ)/ε for regimes 3+ and 4+. (3.5)

The functionH(a, b, c), determined from the model’s Boltzmann weights, is tabulated in
appendix B of [7] for regimes 1+ and 2+. Due to a simple relation between theH functions,
the form of the solution for regimes 3+ and 4+ can be obtained by replacingq with 1/q
in the solution for regimes 2+ and 1+, respectively. (Having obtained the correct form, the
meaning ofq must be taken from (3.5).) The crossing factorS(a) will not concern us.
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The configuration sumsXabcm (q) obey a recurrence relation

Xabcm (q) = qmH(b−1,b,c)Xab−1b
m−1 (q)+ qmH(b,b,c)Xabbm−1(q)+ qmH(b+1,b,c)Xab+1b

m−1 (q). (3.6)

Again we point out that this is of depth one, with three right-hand side terms. This can be
contrasted with the ABF [18] and CSOS [19] models, in which the adjacency rules force
neighbouring heights to differ by one, so that the corresponding recurrence relations have
only two terms on the right-hand side. The Gaussian polynomials (2.4), which themselves
satisfy such a recurrence, are found in the solutions. In the CSOS model,Xabcm has the form

∞∑
j=−∞

q(quadratic inj )

[
m

(m/2)− αj + β
]

(3.7)

while for ABF, the difference of two terms with such structure is seen.
The solutions to (3.6) for regime 1+ and 2+ are listed as (5.26) and (5.36) of [7]. The

solutions are expressed in terms of two functionsF sm(b) andGr
m(b), defined by:

F sm(b) = q(a−s)a/2
∞∑

j,k=−∞

{
q(L+2)(L+1)j2+[(L+2)a−(L+1)s]j+k(k+2(L+1)j+a−b)

×
[

m

k, k + 2(L+ 1)j + a − b
]

−q(L+2)(L+1)j2+[(L+2)a+(L+1)s]j+as+k(k+2(L+1)j+a+b)

×
[

m

k, k + 2(L+ 1)j + a + b
]}

(3.8)

and

Gr
m(b) = q(a−r)a/2

∞∑
j,k=−∞

{
q(L+1)Lj2−[(L+1)r−La]j+k(k+2(L+1)j+a−b)

×
[

m

k, k + 2(L+ 1)j + a − b
]

−q(L+1)Lj2+[(L+1)r+La]j+ar+k(k+2(L+1)j+a+b)

×
[

m

k, k + 2(L+ 1)j + a + b
]}
. (3.9)

Using trinomials (2.5) and (2.6), we see that we can immediately rewrite the function
F sm(b) with a single sum only:

F sm(b) = q(a−s)a/2
∞∑

j=−∞

{
q(L+2)(L+1)j2+[(L+2)a−(L+1)s]j

[
m

2(L+ 1)j + a − b
](0)

2

−q(L+2)(L+1)j2+[(L+2)a+(L+1)s]j+as
[

m

2(L+ 1)j + a + b
](0)

2

}
. (3.10)

Four different expressions appear in the solution to the recurrences in regime 1+ as
obtained in [7]:

(i) Fbm(b)

(ii) qb/2Fb+1
m (b)

(iii) Fbm(b)+ (1− qm)qbF b+2
m−1(b + 1)

(iv) qb/2Fb+1
m (b)+ (1− qm)q−b/2Fb−1

m−1(b − 1). (3.11)
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As a consequence of (3.10), expressions (i) and (ii) have two terms of the same general
structure as (3.7), with trinomials replacing the Gaussian polynomials. However, the other
two expressions are not as ‘neat’ as those seen in other solvable models; they contain, in
fact, six such terms, of orderm− 1 as well as orderm.

Applying (2.12) to expressions (iii) and (iv), it becomes apparent that the fundamental
building block in fact ought to be

F s,pm (b) = q(a−b)(a+b−s)/2
∞∑
j=0

q(L+2)(L+1)j2+[(L+2)a−(L+1)s]j

[
m

2(L+ 1)j + a − b
](p)

2

(3.12)

so that

F sm(b) = qb(b−s)/2{F s,0m (b)− F−s,0m (−b)}. (3.13)

Then each of the other two expressions in (3.11) can also be written as a difference ofF
functions:

Fbm(b)+ (1− qm)qbF b+2
m−1(b + 1) = Fb+2,1

m (b)− F−b,1m (−b)
qb/2Fb+1

m (b)+ (1− qm)q−b/2Fb−1
m−1(b − 1) = Fb+1,1

m (b)− F−(b−1),1
m (−b). (3.14)

For regime 2+, the expressions found in the solution to (3.6) as given in [7] are

(i) Gb
m(b)

(ii) q−b/2Gb−1
m (b)

(iii) q−b/2Gb−1
m (b)+ (1− qm)qb/2Gb+1

m−1(b + 1)

(iii ∗) q−1G1
m(2)+ (1− qm)qG3

m−1(3)− q−1G1
m(0)

(iv) Gb
m(b)+ (1− qm)q−bGb−2

m−1(b − 1). (3.15)

We are led to define an analogous function

Gr,pm (b) = q(a−b)(a+b−r)/2
∞∑

j=−∞
q(L+1)Lj2−[(L+1)r−La]j

[
m

2(L+ 1)j + a − b
](p)

2

. (3.16)

Now, for theGr
m function we have

Gr
m(b) = qb(b−r)/2{Gr,0m (b)− G−r,0m (−b)} (3.17)

and the remaining expressions in (3.15) can be rewritten using (2.12) as

q−b/2Gb−1
m (b)+ (1− qm)qb/2Gb+1

m−1(b + 1) = Gb+1,1
m (b)− G−(b−1),1

m (−b)
Gb
m(b)+ (1− qm)q−bGb−2

m−1(b − 1) = Gb,1m (b)− G−(b−2),1
m (−b). (3.18)

Applying (2.11) then simplifies (iii∗) further.
Details of the substitutions and manipulations needed to obtain (3.14) and (3.18), as well

as confirmation (using (2.8)–(2.10)) that the new forms we list below satisfy the original
recurrence (3.6) were given in [20].

We are now in a position to rewrite the solutions from [7].
The possible values ofb must be broken into four sets. For regime 1+ they are

s1 = {1, 3, . . . , l} s2 = {l + 1, l + 3, . . . , L− 1}
s3 = {2, 4, . . . , l − 1} s4 = {l + 2, l + 4, . . . , L} (3.19)

and for regime 2+:

t1 = {1, 3, . . . , l − 1} t2 = {l + 2, l + 4, . . . , L− 1}
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t3 = {2, 4, . . . , l} t4 = {l + 1, l + 3, . . . , L} (3.20)

wherel is given by

l =


2

⌊
L− 1

4

⌋
+ 1 regime 1+

2

⌊
L+ 1

4

⌋
regime 2+.

(3.21)

Then our forms for the solutions are

Xabcm (q) = qmH(b,b,c)



Fb,0m (b)− F−b,0m (−b) b ∈ s1; b ∈ s4 andc = b + 1

Fb+1,0
m (b)− F−b−1,0

m (−b) b ∈ s2; b ∈ s3 andc = b − 1

Fb+1,1
m (b)− F−b+1,1

m (−b) b ∈ s3 andc = b, b + 1

Fb+2,1
m (b)− F−b,1m (−b) b ∈ s4 andc = b, b − 1

(3.22)

in regime 1+. In regime 2+, where, to avoid confusion, the solutions to (3.6) are called
Y abcm (q), we have

Y abcm (q) = qmH(b,b,c)



Gb,0m (b)− G−b,0m (−b) b ∈ t1; b ∈ t4 andc = b − 1

Gb−1,0
m (b)− G−b+1,0

m (−b) b ∈ t2; b ∈ t3 andc = b + 1

Gb+1,1
m (b)− G−b+1,1

m (−b) b ∈ t3 \ {2} andc = b − 1;

b ∈ t3 andc = b
G3,0
m (2)− G−3,0

m (−2) b = 2 andc = 1

Gb,1m (b)− G−b+2,1
m (−b) b ∈ t4 andc = b, b + 1.

(3.23)

This representation of the solutions is preferable for three reasons. First, there is a
pleasing symmetry between the structure of all elements, and direct analogy with the form
(3.7) seen in other models. In turn, this makes the process of taking the thermodynamic
limit (m→∞) simpler. Finally, performing the transformationq → 1/q, which gives the
solution in the remaining two regimes, is now straightforward even whenm is finite. We
now explore these last two ideas.

4. Regimes 3+ and 4+

The objects of interest in [7] were the order parameters (3.3) and (3.4). Hence it was only
important to takeq → 1/q in terms inXabcm (q) which would then dominate oncem→∞.
Furthermore, it was necessary to do this only for the subset of configurations for which the
values ofb and c correspond to a ground-state phase. In the light of the recent work in
which the bosonic polynomials for finitem have featured, a complete set of expressions for
the configuration sums of the dilute A model in regimes 3+ and 4+ is pertinent. Of course,
we wish to write them, including those already given in [7], in terms of trinomials.

In [7], the identity[
m

k, l

]
1/q

= qk2+l2+kl−(k+l)m
[
m

k, l

]
q

(4.1)
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was used when takingq → 1/q in the regimes 1+ and 2+ solutions to find the configuration
sums in regimes 4+ and 3+, respectively. The expressions which result resemble (3.8) and
(3.9) but cannot be written in terms of the trinomials

[
m

A

](p)
2 . However, the literature [8]

provides furtherq-analogues of the trinomial coefficients, among which is

Tp(m,A, q
−1/2) = q [A2−m2+p(m−A)]/2

[m
A

](p)
2

(4.2)

or using the notation of Schilling [9][m
A

](p)
2

∣∣∣∣
1/q

= q [A2−m2−p(A−m)]/2T (2)p (m,A). (4.3)

We are thus able to write

F s,pm (b)|1/q = q [b(s+p)−a(2b−s+p)−m(m−p)]/2

×
∞∑

j=−∞
qL(L+1)j2+j [La−(L+1)(2b−s+p)]T (2)p (m, 2(L+ 1)j + a − b) (4.4)

Gr,pm (b)
∣∣
1/q = q [b(r+p)−a(2b−r+p)−m(m−p)]/2

×
∞∑

j=−∞
q(L+1)(L+2)j2+j [(L+2)a−(L+1)(2b−r+p)]T (2)p (m, 2(L+ 1)j + a − b).

(4.5)

It is convenient to define two further functions

Hs,pm (b) = q [(b−a)s−m(m−p)]/2
∞∑

j=−∞
qL(L+1)j2−j [(L+1)s−La]T (2)p (m, 2(L+ 1)j + a − b) (4.6)

Ir,pm (b) = q [(b−a)r−m(m−p)]/2
∞∑

j=−∞
q(L+1)(L+2)j2+j [(L+2)a−(L+1)r]T (2)p (m, 2(L+ 1)j + a − b)

(4.7)

which should be compared with (3.16) and (3.12), respectively.
To obtain the configuration sums for regime 3+ from those in 2+ we replaceq with

1/q in the five expressions from (3.15), though of course in theirG form, giving

(i) Ib,0m (b)− I−b,0m (−b)
(ii) Ib+1,0

m (b)− I−(b+1),0
m (−b)

(iii) Ib,1m (b)− I−b,1m (−b) (4.8)

(iii ∗) I1,0
m (2)− I−1,0

m (−2)

(iv) I(b+1),1
m (b)− I−(b+1),1

m (−b).
Finally, the four expressions we need to writeXabcm (q) for regime 4+ are

(i) Hb,0m (b)−H−b,0m (−b)
(ii) Hb−1,0

m (b)−H−(b−1),0
m (−b) (4.9)

(iii) H(b−1),1
m (b)−H−(b−1),1

m (−b)
(iv) Hb,1m (b)−H−b,1m (−b).
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5. Virasoro characters

Like those of other solvable models, in the thermodynamic (m → ∞) limit, apart from
some prefactors which cancel in the order parameters (3.3) and (3.4), the ground-state
configuration sums of the dilute A model coincide with characters of the associated
conformal algebra. In regimes 1+ and 2+ this is the unitary minimal seriesM(p, p + 1),
and in the other two regimes the product of this series with the Ising model,M(3, 4). The
Rocha–Caridi form for the Virasoro character ofM(p, p + 1), normalized as in [11], is

χ(p+1)
r,s (q) = 1

(q)∞

∞∑
j=−∞
{qj(p(p+1)j+(p+1)r−ps) − q(jp+r)(j (p+1)+s)}. (5.1)

It was established in [7] that for the ferromagnetic ground states†
regime 1+ Xabb∞ (q) ∼ χ(L+2)

a,s (q) s = 1, 3, . . . , L

regime 2+ Xabb∞ (q) ∼ χ(L+1)
r,a (q) r = 1, 3, . . . , L− 2

regime 3+ Xabb∞ (q) ∼ χ1/16(q)χ
(L+2)
a,s (q) s = 2, 4, . . . , L+ 1

regime 4+ Xabb∞ (q) ∼ χ1/16(q)χ
(L+1)
r,a (q) r = 2, 4, . . . , L− 1

(5.2)

and for the antiferromagnetic ground states

regime 3+ Xabb+1
∞ (q) ∼ χµa/2(q)χ(L+2)

a,s (q) s = 1, 3, . . . , L

regime 4+ Xabb+1
∞ (q) ∼ χµa/2(q)χ(L+1)

r,a (q) r = 1, 3, . . . , L− 2.
(5.3)

Here the Ising characters are

χµa/2(q) = χ(4)µa+1,1(q) χ1/16(q) = χ(4)1,2(q) (5.4)

andµa = 0, 1 depends on the parity ofa andb, and whetherm is taken to infinity through
odd or even values, a feature of antiferromagnetic phases.

These results can be obtained more simply than they were in [7], now that the
configuration sums have all been written as the difference of two terms, each of which
contains trinomials.

The asymptotic behaviour of the trinomials is [8]

lim
m→∞

[m
A

](0)
2
= 1

(q)∞

lim
m→∞

[m
A

](1)
2
= 1+ qA

(q)∞

lim
(m−A) even
m→∞

T
(2)

0 (m,A) = 1

2

(−q1/2; q)∞ + (q1/2; q)∞
(q)∞

= q1/48χ0(q)

(q)∞

lim
(m−A) odd
m→∞

T
(2)

0 (m,A) = 1

2

(−q1/2; q)∞ − (q1/2; q)∞
(q)∞

= q1/48χ1/2(q)

(q)∞

lim
m→∞ T

2
1 (m,A) =

(−q; q)∞
(q)∞

= q−1/24χ1/16(q)

(q)∞
. (5.5)

It is immediately apparent that, in the thermodynamic limit of (3.22), (3.23), (4.8) and
(4.9), the trinomials always provide the prefactor 1/(q)∞ which goes with the sum overj
to build the appropriate characterχ(p+1)

r,s . In regimes 3+ and 4+ they also provide the Ising
character. It is then straightforward to observe that all configurations in (4.8) and (4.9),

† The characters used in [7] were not in the normalized form of (5.1).
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including the non-ground-state ones, give the same characters as appear in (5.2) and (5.3),
when the values ofb are correctly chosen from (3.19) and (3.20). Finally, we observe that
elements (iii) and (iv) in regimes 1+ and 2+, which do not correspond to ground states
and hence were not treated in the thermodynamic limit in [7], give combinations of the
characters from (5.2):

regime 1+ (iii ) ∼ q(a−b)a/2χ(L+2)
a,b (q)+ q(a−b)(a−2)/2χ

(L+2)
a,b+2 (q) b ∈ s4

(iv) ∼ q(a−b)(a+1)/2χ
(L+2)
a,b−1 (q)+ q(a−b)(a−1)/2χ

(L+2)
a,b+1 (q) b ∈ s3

regime 2+ (iii ) ∼ q(a−b)(a+1)/2χ
(L+1)
b−1,a (q)+ q(a−b)(a−1)/2χ

(L+1)
b+1,a (q) b ∈ t3

(iv) ∼ q(a−b)(a+2)/2χ
(L+1)
b−2,a (q)+ q(a−b)a/2χ(L+1)

b,a (q) b ∈ t4. (5.6)

6. Closing remarks

Bosonic polynomials, like those discussed above, have attracted interest because they
provide one side of generalized Rogers–Ramanujan-type identities. This idea was explored
for the dilute A3 model in [10], with the notation of [7]. We are thus able to give alternate
expressions to those in (13) of [10] for some elements:

Y 122
m = qm{B3,1(m, 1, 2)+ q−1B1,1(m, 1, 0)}
Y 133
m = qm−3B1,1(m, 1, 3). (6.1)

In doing this, we have taken our expressions (iii) and (iv) and made use of the identity
(2.11) to write all terms using

[
m

k

](0)
2

; that this gives a simple expression is a special feature
of L = 3.

Solutions to the recurrence relation (3.6) for the dilute AL model have only appeared
for L odd. Consequently, here we provide the natural ‘language’ for a future solution with
L even. We have also made explicit the role of theq-trinomial coefficients, both

[
m

A

](p)
2

andT (2)p (m,A), in the configuration sums of the dilute A model, giving our results for all
regimes and phases.
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